LTT2API - Reference

Version 3.2.xx

LTT GmbH
Friedrich-Bergius-Ring 15
D-97076 Wirzburg
www.tasler.de

Tel. +49-931-359 61-0
Fax +49-931-359 61-50

/

Z_L’TT*

This handbook has been created to the best of our knowledge. The information contained herein is

given without guarantee and may be changed without notice. The software described is covered by
the included software licence.

No part of this work may be copied and distributed, independent of the method of replication,
electronic or mechanical without expressed written consent of LTT GmbH.

© Copyright 2014 by Labortechnik Tasler GmbH
Friedrich-Bergius-Ring 15

D-97076 Wrzburg

Germany

E-Mail: info@tasler.de

Internet: www.tasler.de

http://www.tasler.de/

Content

140 T 11 e 1o o T 5

Chapter 1: Fundamental Concepts.........ccoceemmmmmmiirissssssss s 6
1.1 SoUrce COde SAMPIES.....ccoi i et e e e 4

1.1.1 BLOCKED _MODE....... e ittt e e e e e e e e e e e e e e e e eeees

1.1.2 NON_BLOCKED _MODE.........ottuiiiiiiiiiieeeeeee et a e e e e e eaaans
1.1.3 STREAM TranSfer... . et

Chapter 2: Function Reference.........oou i rrrr e r e s e r e e 12
P20 B LT (=1 ST () o T 12
/220t I I 00 o T SRS
2t T O I 1Y T PR

2. 1.3 LTTCONNECIDEVICES.cceeeeeeeeeece ettt e e e e e e
214 LTTREICASEDEVICES.eeiiiiiiiiiiiieee ettt e

2. 1.5 LTTSetTransferMOde.coooo e
2.1.6 LTTSEtDEVICEOITEN......cceiiieeee e ettt
217 LTTNEtROG_SCAN......coiiieeeee e
2.1.8 LTTNetRoa_GetScanAddress.cccuuuuiiiiiiiiiiiiiaeee e
2.2 Parameter Handling and Upload................uuiiiiiiiiiiioiee e 20
2.21 LTTRESEtParameter.........coooiiiiiieieee e e e
2.2.2 LTTGetParameters........uuuuiiii et
2.2.3 LTTCascadingMOdE...........coeiiiiiiiiaiiiiiiieee e
2.2.4 LTTMasterCorreCtionMOdE............uuuuiiiiiiiiiiaae e
2.2.5 LTTSYNCCOIECHON.......cciiieeeieiietcee e et e e
2.2.6 LTTUPIOAdParameters.uuuuuuiiiiiiie et e e e
2.3 Channel SettiNgS.......coooiiiiiii e 26
2.3.1 LTTANAIOGCNANNEL........ccoieeeeeeee e
2.3.2LTTDIgitalChannel.............uuuiueiiiiiiiiiieee e
2.3.3LTTRPMCRANNEL......cco it
2.3.4 LTT24PulseRecognitionChannel............ccccccvviiiiiiiiiiiiciieeeee e
2.3.5 LTT24PIsRecogChannelAdvanced.............cccccoiiiiiiiiiiiiiiiiiieeee e
2.3.6 LTT24DACOUPULCANNEL......ciii i
2.3.7 LTT24DACOutputSignalChannel..............ccccoeiiiiiiiiiiiiiieee e
2.3.8 LTT24DigitalLineChannel...............ooorimiiiiiiiiiei e
2.3.9 LTTANAIOgChargeCIlear..........coouiiiiiiiieeeeeeee e

3 Manual Version 3.2.xx

2.3.10 LTTANAIOGAULOZEIO.....ceeiiiiiiiieeeeeee ettt
2.3.11 LTTANaloglOCoMPENSAtION.......cccoeiiiiiiiiiiiiiee e
2.3 12 LTTOUtpULIMPEdANCE.cooeiiiiiiccee e
2.3.13 LTTSetInternReference. ...
2.3.14 LTTGetChannelCONVEMEr.........ouuuuuiiiiiieeee e
2.3. 15 LTTGetChannelRaNge.ueeeiiiiiiiiiiiiiiiie et
2.3.16 LTTGetDMSChannelOffset...........cooiiiiiiiiiiiieeee e
2.3.17 LTTGetChannelCouplingListLength............ccccovieiiiiiiiiie e
2.3.18 LTTGetChannelCouplingList............ueviiiiiiiiiiiiiiieeee e
2.3.19 LTTGetChannelRangeListLength..............ccciiiiiiiii e
2.3.20 LTTGetChannelRangeList. ...
2.3.21 LTTGEtChanNNEIID......ccccoiiiiiiiee et a e e e e e e
2.4 Timebase and Filter Settings...........coooiiiiiiii e 49
241 LTTSamPIETIME.....ccciiiiiiieeeieeeeeee et e e e et e e e
S I 1 (= TP
243 LTTGEtRESOIULION.o
2.4.4 LTTGetSampleTimeListLength............cccoomiiiiii e
245 LTTGetSampleTimeList..........ooooiimiiiiiicei e
2.5 Trigger SEtHNGS. . ceeeiiiiieii e 54
P2 T I 0 I I I T o = PSP PP PPPPPT
252 LTTTrigger SetPreTrigger. ..o i it
2.5.3 LTTTrigger_GetPreTriggerLimit..........ccccummiiiiiii e
2.5.4 LTTTrigger_SetReactivationTime............coooiiiiiiiiiiiiiieei e
255 LTTTrigger_SetABAMOUE.........cccoiiiiiiiieeeeeee e
2.5.6 LTTTrigger_TriggerSCan........ccouuiiiiiiiiiiiiiiiieeeeeee e
2.6 Transfer Buffer Settings. ... 61
2.6.1 LTTGetRAMBUTTErSettings.uuucceeiiiiii e
2.6.2 LTTRAMBUErSEettingS........ooiiiiiiiiiiiiccee e
2.6.3 LTTSTREAMSENGS.eeeiieeeiiiiiiee ettt e e e e e
2.6.4 LTTSTREAMTIANSTEN...cuiiiiiiiiiiei e
2.6.5 LTTBUFErRESEL.......oeiiiiiiiiiiie e
2.7 Transfer CONIOL...........uiiiiii e 66
P 0 T T 1 - o SO EPP TP
A T I] (o] o PP
P 8 B 0 1O 4T I T o =T R
2.7.4 LTTTransfer2BUffers. ... e
2.7.5 LTTStream2BUSfer.........ooiiiiiiieiie e

4 Manual Version 3.2.xx

2.7.6 LTTStream2BUfferCB..........ccooiiiiieeeeee e
2.7.7 LTTDataTransferStatus..........cooo i
2.7.8 LTTDataTransferWait. ...
2.7.9 LTTDataTransferBreak..........ui oo
2710 LTTData_GetCOUNEI......cco e
2.7.11 LTTDataTransferCouNter.........ccoooi i
2.7.12 LTTGetChannelSequencelLength.........cccccooiiiiiiiiiiiiiiiiiieee e
2.713 LTTGetChannellDSEqUENCE...........uuuuuieiieiiii e
2.8 InterNal HD @CCESS.uuuuiiiiiiei e eeeees 80
2.8.1 LTTHDGEtSECIOrCOUNt......ceeieeeeeeie et
2.8.2 LTTHDRECOrAREPIAY......ceiieiiiiiiiieiieeeee e
2.8.3 LTTHDRecordReplaySetPOS. ...
2.8.4 LTTHDRecordLeaveRePIaY........cccoiiiiiiieeiiieeeieeee e
2.8.5 LTTHDRecCOrdLENGN........ i e
2.8.6 LTTHDRECOrABUHON.......ccoeiiiiieieeeeeeeee e e e
2.8.7 LTTHDGEtRecOordINfo.......cooeiiiieeieee e
2.8.8 LTTHDGetRecordParameter............c..uuuuiiiiiiiiiiieeeeeeee e
2.9 MiISCEIIANEOUS. ... e e e e e e eae s 88
2.9.1 LTTGetCalibTemperature.............oouuuiiiiiiiiieiie e
2.9.2 LTTGetTeMPEratUre.e e e e
2.9.3 LTTGEtDLLINTO...ciiiiiee e
2.9.4 LTTGEIVEISION....ccoeieeeiteicee et e e e e e e e e e e e ee e
2.9.5 LTTGetDeVICEINTO. ...
2.9.6 LTTGetDEVICEINTOEX.eiiiiiiiiiiee ettt
2.9.7 LTTGEIDEVICES.cce ettt e e e e e e e e
2.9.8 LTTChaNNEI2DEVICE.uuuuuiiiii ittt e e e
2.9.9 LTTChannelAIDEVICE........c..uueiiiiiiiiieieiii e e e
2.9.10 LTTDEVICE2CNANNEL.uueeeiiiiiiieee e

5 Manual Version 3.2.xx

Introduction

To integrate LTT measurement systems with third party applications the LTT2API-DLL was
developed. Using the DLL opens a wide range of possibilities for efficient use of the LTT-
Hardware.

This chapter describes the programming interface LTT2API Version 3.2.x.

Every function is described using the following format:

<Function Name>

[Device]
Declaration:

<Declaration of the function>

Description:
<Description of the function and explanation of the use of the function>

Input:
<specifies and describes the function parameters>

Return:

<specifies the return value>

Note: The note [Device] in the 2™ line after the <Function Name> indicates a direct
communication with the LTT-System.

6 Manual Version 3.2.xx

Chapter 1:
Fundamental Concepts

The API is designed to manage one or a group of LTT devices in an efficient manner. The
most important design goals are stability and performance. The calls are described in
STDCALL calling convention.

The use of the API is divided in several steps:

Initialization:

Setup:

The call LTTInit must be the first call to the APIl. With this call the internal
resources are initialised and the system is scanned for connected LTT devices.
Note: This function should be used only once at the beginning.

The devices can now be configured with a certain setup, as turn on several
channels, select its input type and range or select a trigger. Also the amount of
data has to be specified. These calls don't communicate directly with the devices.
Instead, all setup calls build up a certain configuration which is passed to the
devices with LTTUploadParameters. This call does an integrity check to see if the
configuration is a valid one.

Transfer:

The devices will be started with LTTStart, which basically means that the trigger
will be active or in the case of no trigger, the measurement process of the devices
begins.

Now the transfer of the data from the devices to the RAM-buffer/File can be done
in two ways. In both cases the transfer is invoked with LTTTransfer2Buffers.

BLOCKED_MODE:
The call LTTTransfer2Buffers returns when the transfer of the data to the RAM-
buffer/File is completed. This is the easiest way, and the most used one.

NONE_BLOCKED_MODE:

The call LTTTransfer2Buffers returns immediately after invoking the transfer.
Now the transfer to the RAM-buffer/File needs the cooperation of the application.
The transfer must be monitored with LTTTransferStatus to catch when the
transfer is completed or interrupted.

In STREAM-mode the internally used buffer is mostly smaller then the requested
transfer amount of data, so this buffer is used like a ring-buffer. To avoid the
overwriting of already in the buffer transferred data, the application must read out
blocks of already transferred data. If the call LTTTransferStatus signals that there
is an amount of data ready for read-out, then the start index and the length of the
block inside the buffer must be obtained with LTTData_GetBlock. When the

7 Manual Version 3.2.xx

Z_L;?T*

processing of the block is finished, LTTData_BlockDone must be called. Now go
back to monitoring the transfer with LTTTransferStatus.

Deinitialization:
To close all internal resources, call LTTDelnit.

Other calls:
The API provides a number of different informative calls. They are not necessary
for the data transfer, but quite a lot of information about the status and the devices
can be obtained.

8 Manual Version 3.2.xx

1.1 Source code samples

In the following a source code sample for each of the transfer modes is provided. Both
sample are written in plain C:

1.1.1 BLOCKED_MODE:
#include <ltt2api.h>

uint32 t ch an, ch dig;
short p data[128*1024];
int32 t dev _cnt, ret, seq;

dev_cnt = LTTInit(&ch _an, &ch dig, NULL, NULL);

// channel 0 on, +/-5V range, single ended DC

LTTAnalogChannel (0, 1, 5000, LTT CHNL 24 COUP_VOLT SE DC _BNC, 0, 0);
// channel 3 on, +/-500mV range, diff. ended DC

LTTAnalogChannel (3, 1, 500, LTT CHNL 24 COUP VOLT DE DC BNC, 0, 0);

// trigger at ch 0, LEVEL, 2V-threshold,
// pos. slope, 200mV sensitivity
LTTTrigger(1, O, O, O, O, 0.4, 0.04);

// sample rate: 1 Mhz <==> 1000 ns
LTTSampleTime (1000, 0);

// RAMBuffer: 32kS per channel ==> 2 * 32 * 1024 * 2 = 128 kB
seq = 32 * 1024;
LTTRAMBufferSetting(&p_data, seq, 2);

// submit to device (s)

if (LTTUploadParameters () ==) |
// start LTT device(s)
LTTStart () ;

// invoke transfer
1Amount = LTTTransfer2Buffers(0, LTT TRANSFER BLOCKED) ;

// clean up
LTTDeInit () ;

9 Manual Version 3.2.xx

1.1.2 NON_BLOCKED_ MODE:
#include <ltt2api.h>

uint32 t ch an, ch dig;
short p data[128*1024];
int32 t dev _cnt, ret, seq, status;

dev_cnt = LTTInit(&ch _an, &ch dig, NULL, NULL);

// channel 0 on, +/-5V range, single ended DC

LTTAnalogChannel (0, 1, 5000, LTT CHNL 24 COUP VOLT SE DC BNC, 0, 0);
// channel 3 on, +/-500mV range, diff. ended DC

LTTAnalogChannel(3, 1, 500, LTT CHNL 24 COUP_VOLT DE DC BNC, 0, 0);

// trigger at ch 0, LEVEL, 2V-threshold,
// pos. slope, 200mV sensitivity
LTTTrigger(1, 0, 0, 0, 0, 0.4, 0.04);

// sample rate: 1 Mhz <==> 1000 ns
LTTSampleTime (1000, 0);

// RAMBuffer: 32kS per channel ==> 2 * 32 * 1024 * 2 = 128 kB
seq = 32 * 1024;
LTTRAMBufferSetting(&p_data, seq, 2);

// submit to device (s)

if (LTTUploadParameters () ==) |
// start LTT device(s)
LTTStart (),

// invoke transfer
LTTTransfer2Buffers(O, LTT TRANSFER NONEBLOCKED) ;

// monitor transfer
status = 0;
while(status <= 0) {
status = LTTDataTransferStatus();

if (status ==)
// nothing todo
continue;

else 1if(status == -1)
// waiting for trigger
DoSomethingWhileNotTriggered() ;

else 1f(status < 0)
// ERROR
break;

}

if(status > 0) {
// do something with the data
}

// clean up
LTTDeInit ();

10 Manual Version 3.2.xx

1.1.3 STREAM Transfer:
#include <ltt2api.h>

uint32 t ch an, ch dig;
short p data[128*1024];
int32 t dev _cnt, ret, seq;

dev_cnt = LTTInit(&ch _an, &ch dig, NULL, NULL);

// channel 0 on, +/-5V range, single ended DC

LTTAnalogChannel (0, 1, 5000, LTT CHNL 24 COUP VOLT SE DC BNC, 0, 0);
// channel 3 on, +/-500mV range, diff. ended DC

LTTAnalogChannel(3, 1, 500, LTT CHNL 24 COUP_VOLT DE DC BNC, 0, 0);

// trigger at ch 0, LEVEL, 2V-threshold,
// pos. slope, 200mV sensitivity
LTTTrigger(1, 0, 0, 0, 0, 0.4, 0.04);

// sample rate: 1 Mhz <==> 1000 ns
LTTSampleTime (1000, 0);

// STREAM: 32kS per channel ==> 2 * 32 * 1024 * 2 = 128 kB
seq = 32 * 1024;
LTTSTREAMTransfer (0, seq);

// submit to device (s)

if (LTTUploadParameters () ==) |
// start LTT device(s)
LTTStart (),

// invoke transfer
ret = LTTStream2Buffer (p_data, seq, LTT TRANSFER BLOCKED) ;

// clean up
LTTDeInit ();

11 Manual Version 3.2.xx

ETT-
Chapter 2:
Function Reference
2.1 Initialisation
2.1.1 LTTInit Changed
[Device]

Declaration:

int32 t _ stdcall LTTInit(
int32_t *p analog_cnt,
int32_t *p digital cnt,
int32_t *p_ rpm cnt,
int32_t *p digio_cnt
);

Description:
Initializes internal resources and searches for all connected LTT devices. Supported

are the transient recorder LTT-184/186 as well as new sensorcorder LTT-180/182.
The parameters are optional and a NULL-Pointer can be passed also;
The devices found are always connected after initialisation.

Input:
p_analog_cnt
number of analog channels;

p_digital_cnt
number of digital channels

p_rpm_cnt
number of RPM channels

p_digio_cnt
number of digital-lO channels;
is always O;

Return:
Number of LTT devices found.

12 Manual Version 3.2.xx

2.1.2 LTTDelnit
O

Declaration:

void _ stdcall LTTDeInit(void) ;

Description:
Shuts down internal systems and frees resources.

Input:

Return:

13 Manual Version 3.2.xx

/

Z_L’TT*

2.1.3 LTTConnectDevices

[Device]
Declaration:

void _ stdcall LTTConnectDevices(void);

Description:
Connect to devices for exclusive use.

Input:

Return:

14 Manual Version 3.2.xx

/

Z_L’TT*

2.1.4 LTTReleaseDevices

[Device]
Declaration:

void _ stdcall LTTReleaseDevices(void);

Description:
Closes open connections to devices.

Input:

Return:

15 Manual Version 3.2.xx

/

Z_L’TT*

2.1.5 LTTSetTransferMode NEW

[Device]
Declaration:

int32_t _ stdcall LTTSetTransferMode (
int32_t type,
const char *p local,
const char *p netmask,
const char *p remote

)

Description:
Changes OSAL transfer subsystem.

IMPORTANT:
IMust be called before LTTInit() !

Input:
type
transfer subsystem
1 — direct access (default)
3 — NETROA over network
4 — LTTROA system service

p_local
pointer to c-string containing IP-address of local network adapter;

p_netmask
pointer to c-string containing IP-netmask of local network adapter;

p_remote
pointer to c-string containing comma separated list of IP-addresses of remote
LTTROAD-system to which LTT2API should connect to;

Return:
0 - Always

16 Manual Version 3.2.xx

/

Z_L’TT*

2.1.6 LTTSetDeviceOrder NEW

[Device]
Declaration:

int32_t _ stdcall LTTSetDeviceOrder (
uint32_t dev_cnt,
const uint32_t *p devorder

)

Description:
Sets a device order.
If device-order list doesn't match the devices found, it will be ignored.

IMPORTANT:
Must be called before LTTlInit() !

Input:
dev_cnt

length of device-order list;
[0..3]

p_devorder
pointer to list with serial numbers;

Return:
0-0OK
-1 —invalide pointer
-2 — device-count out-of-range

17 Manual Version 3.2.xx

/

Z_L’TT*

2.1.7 LTTNetRoa_Scan NEW

[Device]
Declaration:

void _ stdcall LTTNetRoa_Scan (
const char *p local,
const char *p netmask

)

Description:
Scans network for available NETROA clients with LTT-devices

Input:
p_local

pointer to c-string containing IP-address of local network adapter;

p_netmask
pointer to c-string containing IP-netmask of local network adapter;

Return:
number of clients found.

18 Manual Version 3.2.xx

/

Z_L’TT*

2.1.8 LTTNetRoa_GetScanAddress NEW

[Device]
Declaration:

int32_t _ stdcall LTTNetRoa_GetScanAddress (
uint32_ t scan_idx,
char *p addr

)

Description:
Gets IP-address of client scan_idx from a previous LTTNetRoa_Scan() call..
Input:
scan_idx
index; must be smaller than the number of clients found
p_netmask
pointer to c-string where IP-address will be stored;
IMPORTANT:
Application must provide at least 32 Bytes !
Return:
0-OK

19 Manual Version 3.2.xx

&rT

2.2 Parameter Handling and Upload
2.2.1 LTTResetParameter Changed
[Device]

Declaration:

void _ stdcall LTTResetParameter (
int32_t device reset

)

Description:
Resets all parameter settings in LTT2API to default. When device_reset is 0 no

upload to the device(s) occurs and only the DLL parameters are affected. If, however,
device_reset equals 1 the channels are set to internal ground, that is OFF.

Input:
device reset

option to reset the devices
0 — not passed; only APl is reset
other — additionally resets devices;

Return:

20 Manual Version 3.2.xx

—
&
2.2.2 LTTGetParameters Changed

[Device]
Declaration:

int32_t _ stdcall LTTGetParameters (
LTTParam *p para

)

Description:
Gets current valid setup.

Input:

p_para
Pointer to data-structure, where current setup parameters will be

stored.

Return:
0 successful
-1 invalid pointer

21 Manual Version 3.2.xx

2.2.3 LTTCascadingMode NEW

Declaration:

void _ stdcall LTTCascadingMode (
int32_t mode
);

Description:
Specifies how multiple LTT devices will work together.

Independently or in cascading mode.

Input:
mode
specifies wether multiple LTT devices are running cascadied or independent,
but still with the same timebase
0 - independent mode
1 - cascading mode
Return:

None

22 Manual Version 3.2.xx

2.2.4 LTTMasterCorrectionMode

Declaration:

void _ stdcall LTTMasterCorrectionMode (
int32_t mode
);

Description:
Specifies how multiple LTT devices will work together.

Independently or in cascading mode.

Input:
mode

switch correction on/off

0-OFF
1-ON

Return:
None

23

Manual Version 3.2.xx

2.2.5 LTTSyncCorrection NEW

Declaration:

void _ stdcall LTTSyncCorrection (
int32_t corr

)

Description:
Specifies how multiple LTT devices will work together.

Independently or in cascading mode.

Input:
corr
specifies wether multiple LTT devices are running cascadied or independent,
but still with the same timebase
0 - independent mode
1 - cascading mode
Return:
None

24 Manual Version 3.2.xx

Z_L;?T*

2.2.6 LTTUploadParameters Changed

[Device]

Declaration:

int32_t __ stdcall LTTUploadParameters(void);

Description:

Input:

Checks and sends the parameters to the LTT devices.

The parameters have been gathered using LTTAnalogChannel,
LTTAnalogDMSChannel, LTTSampleTime, LTTRAMBufferSetting, etc. but the device
has not yet been configured.

LTTUploadParameters makes a final check to see if the combination of all the
parameters don't make an error and then if successful configures the devices. The
error codes are additive.

Return:

The return value is a sum of the following error codes.

0 successful

-1 LTT device not found or ASPI dll not found

-2 Wrong sample rate by current channel setting
-4 No channels active

-8 transfer active

-16 Wrong channel combination!!

-32 Trigger channel not active

-64 pre-trigger settings wrong - no channel set

-256 pre-trigger settings wrong - invalid pre-trigger length
-512 No Buffer settings specified!!

-1024 First device is not active (internal error)

-2048 filter cut-off frequency out of range

25 Manual Version 3.2.xx

&rT
2.3 Channel Settings
2.3.1 LTTAnalogChannel Changed

O

Declaration:

int32_t _ stdcall LTTAnalogChannel (
uint32_t ch_idx,
uint32_t active,
uint32_t range,
uint32_t coup,
uint32_t supply,
uint32 t offset
)

Description:

Input:

Turns on/off analog channels on standard LTT hardware and apply the channel
settings.

Return:

ch_idx
channel ID
active
0 - channel OFF
1 - channel ON
2 - channel ON - but not calibrated raw data
range
channel range in [mV]
Allowed settings:
Depends on the LTT device
coup
channel coupling as coded value [uint32_{1]
Allow values:
Depends on the particular LTT device
supply
channel supply [mV,uA,mHZz]
offset
channel offset [internal format, e.g. 0]
0 successful
-1 channel doesn't exist
-2 invalid coup
-3 coup doesn't match LTT-Hardware
-4 channel range doesn't match coup settings

26 Manual Version 3.2.xx

2.3.2 LTTDigitalChannel

Declaration:

int32_t _ stdcall LTTDigitalChannel (
uint32_t ch_idx,
uint32_t active

)

Description:
Turns on/off digital channels.

Input:
ch_idx
channel ID, which to be modified.

active
0 - channel OFF
1 - channel ON

Return:
0 successful
-1 channel doesn't exist.

&rT-
Changed
1

27

Manual Version 3.2.xx

/
&
2.3.3 LTTRPMChannel Changed
1

Declaration:

int32_t _ stdcall LTTRPMChannel (
uint32_t ch_idx,
uint32_t active

)

Description:
Turns on/off RPM channels.
CAUTION:
RPM-channels are only available at LTT-184/186 hardware and are deprecated !!
Input:
ch_idx
channel ID, which to be modified.
Must be 0 !l
active
0 - channel OFF
1 - channel ON
Return:
0 successful
-1 channel doesn't exist.

28 Manual Version 3.2.xx

2.3.4 LTT24PulseRecognitionChannel

Declaration:

int32_t _ stdcall LTT24PulseRecognitionChannel (

uint32_t ch_id,
uint32_t mode,
uint32_t pls_cnt,
uint32 t pls ok cnt,
uint32_t pls_rot,
uint32 t pls mean,
const float *p corr

)

Description:

Configures the internal pulse recognition engine of channel.

LTT24 devices only!!

[nput:
ch_id
Analog channel index

mode
<to be described> [0x0000..

pls_cnt
<to be described> [0x0000..

pls_ok cnt
<to be described> [0x0000..

pls_rot
<to be described> [0x0000..

pls_mean
<to be described> [0x0000...

p_corr

Pointer to pulse count correction buffer
correction factor is relativ error in the range [0.0...2.0].

no correction: [1.0]
max. 3072 values!

Return:
<to be described>

.OX3FFF]

.OX3FFF]

.OX3FFF]

.OX3FFF]

OX3FFF]

/

Z_L’TT*

NEW

[Device]

29

Manual Version 3.2.xx

2.3.5 LTT24PIsRecogChannelAdvanced

Declaration:

int32_t _ stdcall LTTAnalogAutoZero (

uint32_t ch_id,

uint32_t gn_dphi,

uint32_t gn_phid,

uint32 t gn phi2d,

uint32_t gn_dphid,

uint32 t gn _dphi2d
);

Description:

/

Z_L’TT*

NEW

[Device]

Configures the gains of the internal pulse recognition engine of channel.

LTT24 devices only!!

[nput:
ch_id
Analog channel index

gn_dphi

<to be described> [0x0000..

gn_phid

<to be described> [0x0000..

gn_phi2d

<to be described> [0x0000..

gn_dphid

<to be described> [0x0000..

gn_dphi2d

<to be described> [0x0000..

Return:
<to be described>

.OX3FFF]

.OX3FFF]

.OX3FFF]

.OX3FFF]

.OX3FFF]

30

Manual Version 3.2.xx

/

Z_L’TT*

2.3.6 LTT24DACOutputChannel NEW

[Device]
Declaration:

int32_t _ stdcall LTTAnalogAutoZero (
uint32_t ch_id,
uint32_t line,
uint32_t mode,
uint32 t gain
);

Description:
Configures the analog output (DAC-Output) of channel.
LTT24 devices only!!

Input:
ch_id
Analog channel index

line
DAC-line at channel [0]
If pulse-recognition is active at channel then [0,1]

mode
DAC operation mode:
[LTT_CHNL_24 DACOUT_OFF,

no pulse recognition active:

LTT_CHNL_24 DACOUT_ADC,
LTT_CHNL_24 DACOUT_CIRCULAR_BUFF,
LTT_CHNL_24 DACOUT_STREAM_INTHD,

pulse recognition active:

LTT_CHNL_24 DACOUT_PULSE_DELTA PHI_2_DOT,
LTT_CHNL_24 DACOUT_PULSE_DELTA_PHI_DOT,
LTT_CHNL_24 DACOUT_PULSE_DELTA_PHI,
LTT_CHNL_24 DACOUT_PULSE_PHI_2_DOT,
LTT_CHNL_24 DACOUT_PULSE_PHI_DOT,
LTT_CHNL_24 DACOUT_PULSE_PHI,

LTT_CHNL_24 DACOUT_PULSE_PULSE_COUNT]

gain
DAC gain [0...15]

Return:
<to be described>

31 Manual Version 3.2.xx

2.3.7 LTT24DACOutputSignalChannel

Declaration:

int32_t _ stdcall LTTAnalogAutoZero (
uint32_t ch_id,
uint32_t line,
uint32_t mode,
uint32 t dac_tb,
uint32_t sig_tb,
float amp,
float off,
float phio,
const intl6_t *p buf
);

Description:
Configures the circular buffer of the analog output (DAC-Output) of channel.

Input:

LTT24 devices only!!

ch_id
Analog channel index
line
DAC-line at channel [0]
mode
signal type:
[LTT_CHNL_24 DACOUT_SIG_DC,
LTT_CHNL_24 DACOUT_SIG_RECTANGLE,
LTT_CHNL_24 DACOUT_SIG_SINE,
LTT_CHNL_24 DACOUT_SIG_TRIANGLE,
LTT_CHNL_24 DACOUT_SIG_BUFFER,
LTT_CHNL_24 DACOUT_SIG_SAWTOOTH]
dac _tb
dac output rate [ns]
[500, 1000, 2000, 4000, 8000]
sig_tb
signal timebase [ns]
amp
signal amplitude [relative to +/-5V]
off
signal offset [relative to +/-5V]
phi0
signal phase offset [radiant]
p_corr

Pointer to user-defined buffer [int16_f]
Currently max. 1536 values!

/

Z_L’TT*

NEW

[Device]

32

Manual Version 3.2.xx

Return:
<to be described>

33 Manual Version 3.2.xx

/

Z_L’TT*

2.3.8 LTT24DigitalLineChannel NEW

[Device]
Declaration:

int32_t _ stdcall LTT24DigitalLineChannel (
uint32_t ch_id,
uint32_t line,
uint32_t coup,
uint32 t filt,
uint32_t mid,
int32 t level
);

Description:
Configures the digital input lines track A,B und Z for pulse-recognition engine of
channel. If pulse-recognition is not active only the information of track A will be used
for digital channel.
LTT24 devices only!!.

Input:
ch_id
Analog channel index

line
Digital line at channel
[0 —Track A,
1 - Track B,
2 —Track Z]

coup
Digital line input coupling
[LTT_CHNL_24 COUP_DIGLINE_OFF,
LTT_CHNL_24 COUP_DIGLINE_DC,
LTT_CHNL_24_COUP_DIGLINE_AC]

filt
Digital line input filter frequence
[LTT_CHNL_24 FILT_DIGLINE_9MHZ,
LTT_CHNL_24 FILT_DIGLINE_16MHZ,
LTT_CHNL_24 FILT_DIGLINE_35MHZ,
LTT_CHNL_24 FILT_DIGLINE_190MHZ]

mid
Mid level for input range
[40 —for 0..80V,
35 —for -5..75V,
30 — for -10..70V,
25 —for -15..65V,
20 — for -20..60V,
15 — for -25..55V,
10 — for -30..50V]

level
Level in input range for high-low decision [mV]

34 Manual Version 3.2.xx

Return:
<to be described>

35 Manual Version 3.2.xx

2.3.9 LTTAnalogChargeClear

Declaration:

int32_t _ stdcall LTTAnalogChargeClear (
uint32_t chnl_cnt,
uint32_t *p chnl list

)

Description:
Charge-Clear for selected channels.

Input:
chnl_cnt

length of channel-list

p_chnl_list
pointer to channel-list for charge-clear

Return:
<to be described>

/

Z_L’TT*

NEW

[Device]

36

Manual Version 3.2.xx

—
&rT
2.3.10 LTTAnalogAutoZero Changed

[Device]
Declaration:

int32_t _ stdcall LTTAnalogAutoZero (
uint32_t chnl_cnt,
uint32_t *p chnl list

)

Description:
Automatic ReZero of GND-Level for selected active channels in current range.

LTT24 and LTT180/182 devices only!

Input:
chnl_cnt
length of channel-list
p_chnl_list
pointer to channel-list for rezero'ing
Return:

<to be described>

37 Manual Version 3.2.xx

/

Z_L’TT*

2.3.11 LTTAnaloglOCompensation NEW

[Device]
Declaration:

int32_t _ stdcall LTTAnalogIOCompensation (
uint32_t chnl_cnt,
uint32_t *p chnl list

)

Description:
Automatic ReZero of GND-Level for selected active channels in current range.

LTT184/186 devices only!

Input:
chnl_cnt

length of channel-list

p_chnl_list
pointer to channel-list for rezero'ing

Return:
<to be described>

38 Manual Version 3.2.xx

—
&rT
2.3.12 LTTOutputimpedance Changed
1

Declaration:

int32_t _ stdcall LTTOutputImpedance (
uint32_t ch_idx,
uint32_t conn_type,
uint32_t impedance

)

Description:
Sets output impedance of signal source for specified input coupling.

LTT184/186 devices only!

Input:
ch_idx
Analog channel ID

conn_type
type of input coupling
0 - SE+ coupling
1 - SE- coupling
2 - DE coupling

impedance
impedance value in [Ohm];
values > 1000000000 --> infinite

Return:
0 successful
-1 channel doesn't exist.
-2 invalid connection type.

39 Manual Version 3.2.xx

2.3.13 LTTSetInternReference

Declaration:

int32_t _ stdcall LTTSetInternReference (
uint32_ t dwDevice,
uint32_t dwRefIdx

)

Description:
Sets all the channels for a given device to the internal reference.
LTT184/186 devices only!
Input:
dwDevice
Selects the LTT device.
dwRefldx
index of reference value table
0<=> GND
1 <=> 857mV
2 <=> 3.00V
3 <=> Vtemp
4 <=> Viemp— 3.00V
5<=> 3.00V - 3.00V
6 <=> 0-857TmV
Return:
0 successful
-1 invalid device index
-2 invalid reference index

&rT-
Changed
1

40

Manual Version 3.2.xx

—
&rT
2.3.14 LTTGetChannelConverter Changed
1

Declaration:

double _ stdcall LTTGetChannelConverter (
uint32_t dwAnalogChannel
)

Description:
Gives back conversion factor for requested analog channel.

Applying this factor to a ADC data sample value will converts the value in units
of [mV]:

[mV] = [ADC] * LTTGetChannelConverter([channel])

Input:
dwAnalogChannel

Analog channel index

Return:
conversion factor

41 Manual Version 3.2.xx

—
&
2.3.15 LTTGetChannelRange Changed
1

Declaration:

int32_t _ stdcall LTTGetChannelRange (
uint32_t dwAnalogChannel

)

Description:
Gives back range for the requested channel.

Input:
dwAnalogChannel

Analog channel index

Return:
maximum range; +/- value in [mV]

42 Manual Version 3.2.xx

—
&
2.3.16 LTTGetDMSChannelOffset Changed
1

Declaration:

int32_t _ stdcall LTTGetDMSChannelOffset (
uint32 t ch_idx
);

Description:
Obtains offset of DMS-channel

Input:
ch_idx
Channel index

Return:
coded channel offset

43 Manual Version 3.2.xx

—
&rT
2.3.17 LTTGetChannelCouplingListLength Changed
1

Declaration:

int32_t _ stdcall LTTGetChannelCouplingListLength (
uint32_t dev_idx
uint32_t coup

)

Description:
Gives back length of list of supported channel-ranges for given Input-Coupling

Input:
dev_idx
Device index.

coup
Input-Coupling

Return:
Length of list

44 Manual Version 3.2.xx

—
&rT
2.3.18 LTTGetChannelCouplingList Changed
1

Declaration:

int32_t _ stdcall LTTGetChannelCouplingList(
uint32 t *p rnglist,
uint32_t dev_idx,
uint32_t coup

);

Description:
fills list with supported channel ranges for given input-coupling
Input:
p_rnglist
Pointer to list, where list of supported ranges will be stored.
dev_idx
Device index.
coup
Input-Coupling
Return:
0 successful
-1 invalid pointer

45 Manual Version 3.2.xx

—
&
2.3.19 LTTGetChannelRangeListLength Changed
1

Declaration:

int32_t _ stdcall LTTGetChannelRangeListLength (
uint32 t dev_idx
uint32_t coup

)

Description:
Gives back length of list of supported channel-ranges for given Input-Coupling

Input:
dev_idx
Device index.

coup
Input-Coupling

Return:
Length of list

46 Manual Version 3.2.xx

—
&rT
2.3.20 LTTGetChannelRangeList Changed
1

Declaration:

int32_t _ stdcall LTTGetChannelRangeList (
uint32 t *p rnglist,
uint32_t dev_idx,
uint32_t coup

);

Description:
fills list with supported channel ranges for given input-coupling
Input:
p_rnglist
Pointer to list, where list of supported ranges will be stored.
dev_idx
Device index.
coup
Input-Coupling
Return:
0 successful
-1 invalid pointer

47 Manual Version 3.2.xx

2.3.21 LTTGetChannellD NEW

Declaration:

int32_t _ stdcall LTTGetChannellID (
uint32_t dev_idx
uint32_t coup

);

Description:
Gives back length of list of supported channel-ranges for given Input-Coupling

Input:
dev_idx
Device index.

coup
Input-Coupling

Return:
Length of list

48 Manual Version 3.2.xx

&
2.4 Timebase and Filter Settings
2.41 LTTSampleTime Changed

O

Declaration:

int32_t _ stdcall LTTSampleTime (
uint32 t SampTime,
int32_t TimeFlag

)

Description:
Sets the sampling time.
Input:
SampTime
Sample time in nano-seconds.
CAUTION:
not all times are allowed!
Supported sample times depend on the particular hardware type.
You can get a full list of supported sample-times from the API.
TimeFlag
If sample time is between two allowed sample times, this parameter indicates,
which of both is chosen for legal sample time. Chooses the sampling time
below (1) or above (0)
Return:

The actual sampling time used in [ns].

49 Manual Version 3.2.xx

—
&rT
2.4.2 LTTFilter Changed
1

Declaration:

int32_t _ stdcall LTTFilter(
uint32_t filter mode,
uint32_t filter cutoff
);

Description:
Sets the digital filter. A common filter for all channels is supported.
Input:
filter_mode
A combination of certain flags, which specifies the requested digital filter.
Filter mode:
[LTT_FILTER_OFF,
LTT_FILTER_ON]
Filter types:
[LTT_FILT_TYPE_BUTTERWORTH,
LTT_FILT _TYPE_BESSEL,
LTT_FILT_TYPE_CHEBYCHEV]
Filter pol:
[LTT_FILT_POL_TWO,
LTT_FILT_POL_FOUR,
LTT_FILT_POL_SIX,
LTT_FILT_POL_EIGHT,
LTT_FILT _POL_TEN,
LTT_FILT_POL_TWELVE,
LTT_FILT_POL_FOURTEEN,
LTT_FILT _POL_SIXTEEN]
filter_cutoff
Cut-Off frequency of the filter [ns] (-3dB point)
Return:
0 successful
-1 wrong filter type
-2 wrong filter pol

50 Manual Version 3.2.xx

2.4.3 LTTGetResolution

Declaration:

Description:
Gets the current bit resolution for the sampling time.

Input:

Return:

int32_t _ stdcall LTTGetResolution(void);

12
14
15

16.

12Bit resolution;
14Bit resolution;
15Bit resolution;
16Bit resolution;

&rT-
Changed
1

51

Manual Version 3.2.xx

—
&
2.4.4 LTTGetSampleTimeListLength Changed
1

Declaration:

int32_t _ stdcall LTTGetSampleTimeListLength(void);

Description:
gives back length of list of supported sample-times

Input:

Return:
length of list

52 Manual Version 3.2.xx

—
&
2.4.5 LTTGetSampleTimeList Changed
1

Declaration:

int32_t _ stdcall LTTGetSampleTimeList (
int32_t *1lpList
);

Description:
fills list with supported sample-times

Input:
IpList
Pointer to list, where list of supported sample times will be stored.

Return:
0 successful
-1 invalid pointer

53 Manual Version 3.2.xx

2.5 Trigger Settings

2.51 LTTTrigger

Declaration:

int32_t _ stdcall LTTTrigger (

)

Description:
Enables or disables the trigger channel and sets trigger parameters.

Input:

uint32_ t Trigger,
uint32_t Slope,
uint32_t Channel,
uint32_t ChType,
uint32_t TrigType,
float f£f1,

float £2

CAUTION:
The analog channels which will be used as trigger channels must be turned on!

Changed
1

Triggering on a digital channel does not require the digital channel is turned on

firmware 6xxx

f1 - digital trigger bit [8..15]
firmware 7xxx

f1 - digital trigger bit [10..15]
CAUTION:
Only the specified bits are allowed !!!

Trig
Trigger state:
[LTT_TRIG_STATE_OFF,
LTT _TRIG_STATE_ON]
Slope
LTT _TRIG_MODE_LEVEL,
LTT _TRIG_MODE_LEVEL DELTA,
LTT_TRIG_DIGMODE_SINGLE_BIT:
[LTT_TRIG_SLOPE_POS,
LTT _TRIG_SLOPE_NEG]
LTT_TRIG_MODE_COMPARISION:
[LTT_TRIG_COMP_BIGGER,
LTT_TRIG_COMP_SMALLER]
LTT_TRIG_MODE_REGION:
[LTT_TRIG_REGION_ENTER,
LTT_TRIG_REGION_EXIT]
Channel

set trigger channel (index begins with 0)

54

Manual Version 3.2.xx

ChType

Trigger channel type :
[LTT_CHNL_TYPE_ANALOG,
LTT_CHNL_TYPE_DIGITAL]

TrigType

f1

f2

Return:
0
-1
-2

Analog:

[LTT_TRIG_MODE_LEVEL,
LTT_TRIG_MODE_COMPARISION,
LTT_TRIG_MODE_REGION,
LTT_TRIG_MODE_LEVEL_DELTA]

Digital:
0 - single bit mode

LTT _TRIG_MODE_LEVEL,

LTT_TRIG_MODE_COMPARISION,

LTT_TRIG_MODE_LEVEL_DELTA:
Threshhold [% FSR]

LTT_TRIG_MODE_REGION:
Lower Threshhold [% FSR]

LTT_TRIG_DIGMODE_SINGLE_BIT:
Trigger-Bit

LTT_TRIG_MODE_LEVEL:
Sensitivity [% FSR]

LTT_TRIG_MODE_REGION:
Upper Threshhold [% FSR]

LTT_TRIG_MODE_LEVEL_DELTA:
minimal difference to previous sample [% FSR]

LTT_TRIG_MODE_COMPARISION,
LTT_TRIG_DIGMODE_SINGLE_BIT:
not used

successful

channel doesn't exist.

level trigger:

can't have negative hysterisis.

delta trigger:

invalid range for f2 (0 < f2 < 6)

level+delta trigger:

invalid range for f2 (0 < f2).

invalid digital trigger bit.
FW 6xx (0 or 7 < Channel < 16)
FW >700 (0 or 9 < Channel < 16)

invalid trigger channel type

invalid trigger type

55

Manual Version 3.2.xx

—
&rT
2.5.2 LTTTrigger_SetPreTrigger Changed
1

Declaration:

int32_t _ stdcall LTTTrigger_ SetPreTrigger (
uint32_t pre triglen,
uint32_t pre sampletime

)

Description:
Sets the pre-trigger length per channel. Units are in kilo samples.

For example, desired is a 500ms pre-trigger using a 400ns sampling rate. The pre-
trigger length is calculated.

500 000 000 ns (1 Sample /400 ns) = 125 000 samples

125 000 samples / (1024 samples) = 122.070
Must be integer number so either 122 (499.7 ms) or 123 (503.8ms) are valid

pre-trigger is only allowed under certain conditions. Per devices only one or a pair
number of active channels are allowed.

The pre-trigger length is limited to 60 Mega samples (120*1024*1024 byte).
So with 6 active channels the maximum pre-trigger per channel is 10 Mega samples.

Input:
pre_triglen:
Amount of pre-tigger
samples [kS]

pre_sampletime:
Sample time in [ns] before
trigger has happened.

CAUTION:
Not all times are allowed.

0 - use no different sampletime

Return:
0 successful
-1 No trigger active
-2 Wrong pre-trigger length

56 Manual Version 3.2.xx

2.5.3 LTTTrigger_GetPreTriggerLimit NEW

Declaration:

int32_t _ stdcall LTTTrigger_ GetPreTriggerLimit (
uint32_t dwTime

)

Description:
Sets reactivation time for Trigger. Typical dead-time for reactivation <5us.
Units are in [ns]. The timer resolution is in steps of 100ns.
The valid range depends on the used sample time:
0 - Reactivation timer OFF
4 * Sampletime...1s - Valid reactivation time
CAUTION:
This option can’t be activated together with LTTTrigger_SetPreTrigger!!
Both are mutually exclusive.
Input:
dwTime
reactivation time in [ns]
Return:
0 successful
-1 No trigger active
-2 Reactivation time too big

57 Manual Version 3.2.xx

/
&
2.5.4 LTTTrigger_SetReactivationTime Changed
1

Declaration:

int32_t _ stdcall LTTTrigger_ SetReactivationTime (
uint32_t dwTime

)

Description:
Sets reactivation time for Trigger. Typical dead-time for reactivation <5us.
Units are in [ns]. The timer resolution is in steps of 100ns.
The valid range depends on the used sample time:
0 - Reactivation timer OFF
4 * Sampletime...1s - Valid reactivation time
CAUTION:
This option can’t be activated together with LTTTrigger_SetPreTrigger!!
Both are mutually exclusive.
Input:
dwTime
reactivation time in [ns]
Return:
0 successful
-1 No trigger active
-2 Reactivation time too big

58 Manual Version 3.2.xx

2.5.5 LTTTrigger_SetABAMode NEW

Declaration:

int32_t _ stdcall LTTTrigger_SetABAMode (
uint32_t dwTime
);

Description:
Sets reactivation time for Trigger. Typical dead-time for reactivation <5us.
Units are in [ns]. The timer resolution is in steps of 100ns.
The valid range depends on the used sample time:
0 - Reactivation timer OFF
4 * Sampletime...1s - Valid reactivation time
CAUTION:
This option can’t be activated together with LTTTrigger_SetPreTrigger!!
Both are mutually exclusive.
Input:
dwTime
reactivation time in [ns]
Return:
0 successful
-1 No trigger active
-2 Reactivation time too big

59 Manual Version 3.2.xx

2.5.6 LTTTrigger_TriggerScan NEW

Declaration:

int32_t _ stdcall LTTTrigger TriggerScan (
uint32_t dwTime
);

Description:
Sets reactivation time for Trigger. Typical dead-time for reactivation <5us.
Units are in [ns]. The timer resolution is in steps of 100ns.
The valid range depends on the used sample time:
0 - Reactivation timer OFF
4 * Sampletime...1s - Valid reactivation time
CAUTION:
This option can’t be activated together with LTTTrigger_SetPreTrigger!!
Both are mutually exclusive.
Input:
dwTime
reactivation time in [ns]
Return:
0 successful
-1 No trigger active
-2 Reactivation time too big

60 Manual Version 3.2.xx

&rT
2.6 Transfer Buffer Settings
2.6.1 LTTGetRAMBufferSettings Changed

O

Declaration:

int32 t _ stdcall LTTGetRAMBufferSettings (
uint32 t dwSamplesPerChannel ,
uint32_t dwChannels

)

Description:
Gives back needed buffer size in bytes.

This is a helper function to calculate the required buffer size for a certain channel
settings and data amount.

Input:
dwSamplesPerChannel

Number samples per channels

dwChannels
Number of channels

Return:
The size of the buffer in bytes.

61 Manual Version 3.2.xx

—
&rT
2.6.2 LTTRAMBufferSettings Changed
1

Declaration:

int32_t _ stdcall LTTRAMBufferSettings(
short *pwBuffer,
uint32_t dwSamplesPerChannel,
uint32_t dwChannels

);

Description:
Setting up the RAM buffer system for data transfer.

The buffer must be allocated by the application. The size must match the channel
settings and data amount.

Transfer handling function is LT T Transfer2Buffers.

Input:
pwBuffer

Pointer to RAM buffer.

dwSamplesPerChannel
Number of samples per channel.

dwChannels
Number of channels.

Return:
0 successful
-1 STREAM already set up !'

RAM and STREAM are exclusive buffer settings.
-2 length per channel is invalid

62 Manual Version 3.2.xx

2.6.3 LTTSTREAMSettings

Declaration:

int32_t _ stdcall LTTSTREAMSettings(

short *pwBuffer,
uint32_t dwBufferSize,

uint32 t dwSamplesPerChannel,

uint32:t dwChannels
);

Description:
Deprecated!

Is not possible to activate anymore.

Input:
pwBuffer

Pointer to RAM-Buffer.

dwBufferSize
Buffer size in samples

dwSamplesPerChannel
Number of samples per channel

dwChannels
Number of channels

Return:
-1 always

&rT-
Changed
1

63

Manual Version 3.2.xx

2.6.4 LTTSTREAMTransfer

Declaration:

int32_t _ stdcall LTTSTREAMTransfer (
int32_t mode,
uint32_t dwSamplesPerChannel
);

Description:
Activates new stream transfer.

Transfer handling function is LTTStream2Buffer.

Input:
mode

Buffer size in samples

dwSamplesPerChannel
Number of samples per channel

Return:
0 successful
-1 ERROR; RAM buffer already set

&rT-
Changed
1

64

Manual Version 3.2.xx

—
&rT

2.6.5 LTTBufferReset Changed
1

Declaration:

void _ stdcall LTTBufferReset(void);

Description:
Resets the transfer buffers systems.

Input:

Return:

65 Manual Version 3.2.xx

&

2.7 Transfer Control
2.7.1 LTTStart Changed
[Device]

Declaration:

int32_t _ stdcall LTTStart(void);

Description:

Starts the LTT devices and activates the trigger if on.
Input:
Return:

0 successful

-1 no device present or no active channels

66 Manual Version 3.2.xx

2.7.2 LTTStop
Declaration:
void _ stdcall LTTStop(void);

Description:
Stops the data acquisition at LTT devices.

Input:

Return:

O

67

Manual Version 3.2.xx

—
&
2.7.3 LTTCheckTrigger Changed
1

Declaration:

int32_t _ stdcall LTTCheckTrigger (
uint32 t MilliSecond
);

Description:
Checks if the trigger has been fulfilled.

In the case the trigger is still active, the call waits the specified amount of time before
the call returns.

Input:
MilliSecond
time in milliseconds to wait after a negative trigger result.
Return:
0 trigger not fulfilled

1 trigger successful

68 Manual Version 3.2.xx

—
&rT
2.7.4 LTTTransfer2Buffers Changed

[Device]
Declaration:

int32_t _ stdcall LTTTransfer2Buffers(
uint32_t buffer type,
uint32_t xfer mode

)

Description:
Transfers the data from the devices to the assigned buffers.

This call initiates the real transfer. The transfer can work in BLOCKED or
NONE_BLOCKED mode.

BLOCKED:
The call returns, when the transfer is done.
This is not possible with the STREAM buffer system.

NONE_BLOCKED:
The transfer is initiated and the call returns immediately.
The Transfer must be monitored with LTTDataTransferStatus.

Input:
buffer_type

Reserved; Always 0.

xfer_mode
0 - Blocked mode;
Call returns, when data are in buffer.
1 - NON-Blocked mode;
Call initiate transfer and returns immediately.
End of transfer can be obtained with LTTDataTransferStatus()

Some flags can be applied to the mode:

4 - Continuous transfer;
For subsequent calls of LTTTransfer2Buffers() a restart of the LTT-systems
is not done. This is necessary for infinite-type of data acquisition.
8 - High precision mode;
Not possible with Continuous-Mode;
Reduces noise feed-back of SCSI-transfer.

69 Manual Version 3.2.xx

No LTT devices.

No buffer type set.

Transfer is active, so can't invoke another transfer !!

File transfer already done. Reconfigure file buffer settings!

BLOCKED mode:

>=0

Number of transferred samples

CAUTION:

The amount of transferred samples must be checked against the requested
data length. If the amount of transferred samples is less than the requested
amount, an irrecoverable error has occurred during the transfer, which led to a
break of the transfer. In the data buffer the correctly transferred data are
stored up to the point where the error has occurred!!

NONE_BLOCKED mode:

0

transfer invoked

70 Manual Version 3.2.xx

_/

Z_L_TT—

2.7.5 LTTStream2Buffer

[Device]
Declaration:

int32_t _ stdcall LTTStream2Buffer(
short *p buffer
uint32_t seq_cnt,
uint32_t xfer mode

)

Description:
Transfers the data from the devices to the submitted buffer.

This call initiates the real transfer. The transfer can work in BLOCKED or
NONE_BLOCKED mode.

BLOCKED:
The call returns, when the transfer is done.
This is not possible with the STREAM buffer system.

NONE_BLOCKED:
The transfer is initiated and the call returns imediately.
The Transfer must be monitored with LT TDataTransferStatus.

Input:
p_buffer:

Pointer to RAM-Buffer.
seq_cnt:
amount of sequences to store; must be multiple of 1024

xfer_mode:
0 - Blocked mode;
Call returns, when data are in buffer.
1 - NON-Blocked mode;
Call initiate transfer and returns imediately.
End of transfer can be obtained with 'LTTDataTransferStatus'

Return:
-1 No LTT devices.
-2 STREAM transfer not active
-3 Transfer is active, so can't invoke another transfer !!
-4 Sequence count is not valid

BLOCKED mode:
>=0 Number of transferred samples

CAUTION:

The amount of transferred samples must be checked against the requested
data length. If the amount of transferred samples is less than the requested
amount, an irrecoverable error has occurred during the transfer, which led to a
break of the transfer. In the data buffer the correctly transferred data are
stored up to the point where the error has occurred!!

NONE_BLOCKED mode:
0 transfer invoked

71 Manual Version 3.2.xx

_/

Z_L_TT—

2.7.6 LTTStream2BufferCB

[Device]
Declaration:

int32_t _ stdcall LTTStream2BufferCB (
short *p buffer
uint32_t seq_cnt,
uint32_t xfer mode

)

Description:
Transfers the data from the devices to the submitted buffer.

This call initiates the real transfer. The transfer can work in BLOCKED or
NONE_BLOCKED mode.

BLOCKED:
The call returns, when the transfer is done.
This is not possible with the STREAM buffer system.

NONE_BLOCKED:
The transfer is initiated and the call returns imediately.
The Transfer must be monitored with LT TDataTransferStatus.

Input:
p_buffer:

Pointer to RAM-Buffer.
seq_cnt:
amount of sequences to store; must be multiple of 1024

xfer_mode:
0 - Blocked mode;
Call returns, when data are in buffer.
1 - NON-Blocked mode;
Call initiate transfer and returns imediately.
End of transfer can be obtained with 'LTTDataTransferStatus'

Return:
-1 No LTT devices.
-2 STREAM transfer not active
-3 Transfer is active, so can't invoke another transfer !!
-4 Sequence count is not valid

BLOCKED mode:
>=0 Number of transferred samples

CAUTION:

The amount of transferred samples must be checked against the requested
data length. If the amount of transferred samples is less than the requested
amount, an irrecoverable error has occurred during the transfer, which led to a
break of the transfer. In the data buffer the correctly transferred data are
stored up to the point where the error has occurred!!

NONE_BLOCKED mode:
1 transfer invoked

72 Manual Version 3.2.xx

2.7.7 LTTDataTransferStatus

Declaration:

O

int32_t _ stdcall LTTDataTransferStatus(void);

Description:

Monitors the status of the transfer.

This function is necessary for the NONE_BLOCKED Mode of transfer.

Input:

Return:
0
-1
-2
-3
-255

>0

nothing TODO
waiting for trigger
new block available
no transfer active
error happened

transfer complete, number of transmitted samples

CAUTION:

The amount of transferred samples must be checked against the requested
data length. If the amount of transferred samples is less than the requested
amount, an irrecoverable error has occurred during the transfer, which led to a
break of the transfer. In the data buffer the correctly transferred data are
stored up to the point where the error has occurred!!

73 Manual Version 3.2.xx

2.7.8 LTTDataTransferWait
1

Declaration:

int32_t _ stdcall LTTDataTransferWait(void);

Description:
Waits until the transfer has finished.

This function is necessary for the NONE_BLOCKED Mode of transfer.

Input:

Return:
-3 no transfer active
-255 error happened

>0 transfer complete, number of transmitted samples

CAUTION:

The amount of transferred samples must be checked against the requested
data length. If the amount of transferred samples is less than the requested
amount, an irrecoverable error has occurred during the transfer, which led to a
break of the transfer. In the data buffer the correctly transferred data are
stored up to the point where the error has occurred!!

74 Manual Version 3.2.xx

/

Z_L’TT*

2.7.9 LTTDataTransferBreak

[Device]
Declaration:

int32_t _ stdcall LTTDataTransferBreak(void);

Description:

Breaks a running transfer.
Input:
Return:

0 successful

-1 error occurred

75 Manual Version 3.2.xx

2.7.10 LTTData_GetCounter
1

Declaration:

int32_t _ stdcall LTTData GetCounter(void);

Description:
Gives back the amount of transferred samples.

This call can be used in NONE_BLOCKED Mode of transfer to monitor the progress
of the transfer.

Input:

Return:
amount of up to now transferred samples

76 Manual Version 3.2.xx

2.7.11 LTTDataTransferCounter
1

Declaration:

int32_t _ stdcall LTTDataTransferCounter(void);

Description:
Gives back the amount of transferred samples.

This call can be used in NONE_BLOCKED Mode of transfer to monitor the progress
of the transfer.

Input:

Return:
amount of up to now transferred samples

77 Manual Version 3.2.xx

2.7.12 LTTGetChannelSequencelLength

Declaration:

O

int32_t _ stdcall LTTGetChannelSequencelLength(void);

Description:

Gives back length of channel sequence.

Input:

Return:
Length of channel sequence.

78

Manual Version 3.2.xx

2.7.13 LTTGetChannellDSequence
1

Declaration:

void _ stdcall LTTGetChannelIDSequence (
uint32 t *pSequencelist
);

Description:
Gives back channel ID in channel sequence.

Input:
pSequencelList

pointer to list. Application must provide sufficient memory !!

Return:
None

79 Manual Version 3.2.xx

2.8 Internal HD Access

2.8.1 LTTHDGetSectorCount
1

Declaration:

int32_t _ stdcall LTTHDGetSectorCount (
uint32 t *p dev_sec cnt,
uint32_t info_size

)

Description:
<to be described>

Input:
p_dev_sec cnt

<to be described>

info_size:
<to be described>

Return:
<to be described>

80 Manual Version 3.2.xx

2.8.2 LTTHDRecordReplay
1

Declaration:

int32_t _ stdcall LTTHDRecordReplay (
uint32_t rec_idx,
char *p info,
uint32_t info_max size

)

Description:
<to be described>

Input:
rec_idx
<to be described>

p_info
<to be described>

info_max_size
<to be described>
Return:
<to be described>

81 Manual Version 3.2.xx

2.8.3 LTTHDRecordReplaySetPos
1

Declaration:

int32_t _ stdcall LTTHDRecordReplaySetPos (
uint64_t seq pos
);

Description:
<to be described>

Input:
seq_pos

<to be described>

Return:
<to be described>

82 Manual Version 3.2.xx

2.8.4 LTTHDRecordLeaveReplay

Declaration:

O

int32_t _ stdcall LTTHDRecordLeaveReplay(void);

Description:
<to be described>

Input:
None

Return:
<to be described>

83

Manual Version 3.2.xx

2.8.5 LTTHDRecordLength

Declaration:

int32_t _ stdcall LTTHDRecordLength (
uint32_ t dwHDSamplesPerChannel
)

Description:
<to be described>

Input:
dwHDSamplesPerChannel

<to be described>

Return:
<to be described>

O

84

Manual Version 3.2.xx

2.8.6 LTTHDRecordButton

Declaration:

int32_t _ stdcall LTTHDRecordButton (
uint32_t use_button

)

Description:
<to be described>

Input:
use_button

<to be described>

Return:
<to be described>

O

85

Manual Version 3.2.xx

2.8.7 LTTHDGetRecordInfo
1

Declaration:

int32_t _ stdcall LTTHDGetRecordInfo (
LTTRecordInfo *p recinfo

)

Description:
<to be described>

Input:
p_recinfo

<to be described>

Return:
<to be described>

86 Manual Version 3.2.xx

2.8.8 LTTHDGetRecordParameter
1

Declaration:

int32_t _ stdcall LTTHDGetRecordParameter (
uint32_t rec_idx,
LTTParam *p para,
char *p info,
uint32 t info max size

)

Description:
<to be described>

Input:
rec_idx
<to be described>

p_para
<to be described>

p_info
<to be described>

info_max_size
<to be described>

Return:
<to be described>

87 Manual Version 3.2.xx

2.9 Miscellaneous

2.9.1 LTTGetCalibTemperature
1

Declaration:

int32_t _ stdcall LTTGetCalibTemperature (
uint32_ t dwDevice

)

Description:
Gives back internal temperature of specified device at last calibration.

Input:
dwDevice

Device ID for which the calibration temperature is requested

Return:
Internal devices temperature in degrees C

88 Manual Version 3.2.xx

/

Z_L’TT*

2.9.2 LTTGetTemperature

[Device]
Declaration:

int32_t _ stdcall LTTGetTemperature (
uint32_t device

)

Description:
Measure temperature in specified device.

Input:
device

Device ID for which the calibration temperature is requested

Return:
current internal devices temperature

89 Manual Version 3.2.xx

2.9.3 LTTGetDLLInfo
O

Declaration:

int32_t _ stdcall LTTGetDLLInfo(
char *pcBuffer

)

Description:
Obtain identification string of the DLL.

Input:
pcBuffer

pointer to buffer where the null terminated string will be put.
Must be at least 64 bytes.

Return:
0 always

a0 Manual Version 3.2.xx

2.9.4 LTTGetVersion
1

Declaration:

int32_t _ stdcall LTTGetDLLVersion(void);

Description:
Obtain version number of the DLL.

The version number is build in the following manner:

(LTT2API_MAJOR << 16) | (LTT2API_MINOR << 8) | LTT2API_BUG

Input:

Return:
Version number

91 Manual Version 3.2.xx

2.9.5 LTTGetDevicelnfo

Declaration:

int32_t _ stdcall LTTGetDeviceInfo(
uint32_ t dwDevice,
char *pcBuffer

)

O

Description:
Obtain identification string of the LTT device.
Input:
dwDevice
Selects the LTT device.
pcBuffer
pointer to buffer where the null terminated string will be put.
Must be at least 64 bytes.
Example:
LTT-184/16 SN:3214 FW:6.0.607 ch: (
Return:
0 successful
-1 device not found.

92

Manual Version 3.2.xx

2.9.6 LTTGetDevicelnfoEx
1

Declaration:

int32_t _ stdcall LTTGetDeviceInfoEx (
uint32_ t dwDevice,
LTTDeviceInfo *spDevInfo

)

Description:
Obtain identification string of the LTT device.
Input:
dwDevice
Selects the LTT device.
spDevinfo
pointer to buffer where the null terminated string will be put.
Must be at least 64 bytes.
Return:
0 successful
-1 device not found.

93 Manual Version 3.2.xx

2.9.7 LTTGetDevices
1

Declaration:

int32_t _ stdcall LTTGetDevices(void);

Description:
Returns the number of devices found.

Input:

Return:
number of devices found.

94 Manual Version 3.2.xx

2.9.8 LTTChannel2Device
1

Declaration:

int32_t _ stdcall LTTChannel2Device (
uint32_t dwChannel,
uint32_t dwChannelType

)

Description:
Returns device index of channel.
Input:
dwChannel:
channel index
dwChannelType:
channel type
Return:
>=0 device index
-1 invalid channel type
-2 invalid channel index

95 Manual Version 3.2.xx

2.9.9 LTTChannelAtDevice
1

Declaration:

int32_t _ stdcall LTTChannelAtDevice (
uint32_t dwChannel,
uint32_t dwChannelType

)

Description:
Returns channel index at device of channel
Input:
dwChannel:
channel index
dwChannelType:
channel type
Return:
>=0 device channel index
-1 invalid channel type
-2 invalid channel index

96 Manual Version 3.2.xx

2.9.10 LTTDevice2Channel
1

Declaration:

int32_t _ stdcall LTTDevice2Channel (
uint32_ t dwDevice,
uint32_t dwDevChannel,
uint32_t dwChannelType

)

Description:
Returns channel index of device index and device channel index
Input:
dwDevice:
device index
dwDevChannel:
device channel index
dwChannelType:
channel type
Return:
>=0 channel index
-1 invalid channel type
-2 invalid device index
-3 invalid device channel index

97 Manual Version 3.2.xx

